Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus.

نویسندگان

  • R N Patel
  • D S Hoare
چکیده

Methylococcus capsulatus grows only on methane or methanol as its sole source of carbon and energy. Some amino acids serve as nitrogen sources and are converted to keto acids which accumulate in the culture medium. Cell suspensions oxidize methane, methanol, formaldehyde, and formate to carbon dioxide. Other primary alcohols are oxidized only to the corresponding aldehydes. Oxidation of formate by cell suspensions is more sensitive to inhibition by cyanide than is the oxidation of other one carbon compounds. This is due to the cyanide sensitivity of a soluble nicotinamide adenine dinucleotide-specific formate dehydrogenase. Oxidation of formaldehyde and methanol is catalyzed by a nonspecific primary alcohol dehydrogenase which is activated by ammonium ions and is independent of pyridine nucleotides. Some comparisons are made with a strain of Pseudomonas methanica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pteridines produced by Methylococcus capsulatus. Isolation and identification of a neopterin 2':3'-phosphate.

Three pteridines have been isolated from the methane- or methanol-oxidizing bacterium Methylococcus capsulatus. Two of these are known compounds, 2-amino-6-carboxy-4-hydroxypteridine and 2-amino-4-hydroxy-6-methylpteridine. The third is shown by degradative and synthetic experiments to be l-threo-neopterin 2':3'-phosphate. Labelling experiments show that both the pteridine moiety and phosphate ...

متن کامل

Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas).

Methanotrophic bacteria perform major roles in global carbon cycles via their unique enzymatic activities that enable the oxidation of one-carbon compounds, most notably methane. Here we describe the annotated draft genome sequence of the aerobic methanotroph Methylococcus capsulatus (Texas), a type strain originally isolated from sewer sludge.

متن کامل

Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.

In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation,...

متن کامل

Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath.

A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 micromol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidati...

متن کامل

Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans.

1. A study was made of the incorporation of carbon from [(14)C]methanol by cultures of Methylococcus capsulatus and Methanomonas methanooxidans growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled substrate for periods of up to 3min, was analysed by chromatography and radioauto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 1971